Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618956

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma de Células Renales/genética , Transformación Celular Neoplásica , Riñón , Neoplasias Renales/genética , Microambiente Tumoral , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
2.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38187626

RESUMEN

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

3.
J Immunol ; 211(4): 563-575, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37341499

RESUMEN

Activated T cells undergo metabolic reprogramming to meet anabolic, differentiation, and functional demands. Glutamine supports many processes in activated T cells, and inhibition of glutamine metabolism alters T cell function in autoimmune disease and cancer. Multiple glutamine-targeting molecules are under investigation, yet the precise mechanisms of glutamine-dependent CD8 T cell differentiation remain unclear. We show that distinct strategies of glutamine inhibition by glutaminase-specific inhibition with small molecule CB-839, pan-glutamine inhibition with 6-diazo-5-oxo-l-norleucine (DON), or by glutamine-depleted conditions (No Q) produce distinct metabolic differentiation trajectories in murine CD8 T cells. T cell activation with CB-839 treatment had a milder effect than did DON or No Q treatment. A key difference was that CB-839-treated cells compensated with increased glycolytic metabolism, whereas DON and No Q-treated cells increased oxidative metabolism. However, all glutamine treatment strategies elevated CD8 T cell dependence on glucose metabolism, and No Q treatment caused adaptation toward reduced glutamine dependence. DON treatment reduced histone modifications and numbers of persisting cells in adoptive transfer studies, but those T cells that remained could expand normally upon secondary Ag encounter. In contrast, No Q-treated cells persisted well yet demonstrated decreased secondary expansion. Consistent with reduced persistence, CD8 T cells activated in the presence of DON had reduced ability to control tumor growth and reduced tumor infiltration in adoptive cell therapy. Overall, each approach to inhibit glutamine metabolism confers distinct effects on CD8 T cells and highlights that targeting the same pathway in different ways can elicit opposing metabolic and functional outcomes.


Asunto(s)
Diazooxonorleucina , Neoplasias , Animales , Ratones , Diazooxonorleucina/farmacología , Glutamina/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Linfocitos T CD8-positivos/metabolismo
4.
Nat Microbiol ; 7(9): 1348-1360, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995841

RESUMEN

Urinary tract infections are among the most common human bacterial infections and place a significant burden on healthcare systems due to associated morbidity, cost and antibiotic use. Despite being a facultative anaerobe, uropathogenic Escherichia coli, the primary cause of urinary tract infections, requires aerobic respiration to establish infection in the bladder. Here, by combining bacterial genetics with cell culture and murine models of infection, we demonstrate that the widely conserved respiratory quinol oxidase cytochrome bd is required for intracellular infection of urothelial cells. Through a series of genetic, biochemical and functional assays, we show that intracellular oxygen scavenging by cytochrome bd alters mitochondrial physiology by reducing the efficiency of mitochondrial respiration, stabilizing the hypoxia-inducible transcription factor HIF-1 and promoting a shift towards aerobic glycolysis. This bacterially induced rewiring of host metabolism antagonizes apoptosis, thereby protecting intracellular bacteria from urothelial cell exfoliation and preserving their replicative niche. These results reveal the metabolic basis for intracellular bacterial pathogenesis during urinary tract infection and identify subversion of mitochondrial metabolism as a bacterial strategy to facilitate persistence within the urinary tract.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Sistema Urinario , Escherichia coli Uropatógena , Animales , Citocromos , Humanos , Ratones
5.
BMC Cancer ; 22(1): 497, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513776

RESUMEN

BACKGROUND: Current cancer immunotherapies have made tremendous impacts but generally lack high response rates, especially in ovarian cancer. New therapies are needed to provide increased benefits. One understudied approach is to target the large population of immunosuppressive tumor-associated macrophages (TAMs). Using inducible transgenic mice, we recently reported that upregulating nuclear factor-kappaB (NF-κB) signaling in TAMs promotes the M1, anti-tumor phenotype and limits ovarian cancer progression. We also developed a mannose-decorated polymeric nanoparticle system (MnNPs) to preferentially deliver siRNA payloads to M2, pro-tumor macrophages in vitro. In this study, we tested a translational strategy to repolarize ovarian TAMs via MnNPs loaded with siRNA targeting the inhibitor of NF-κB alpha (IκBα) using mouse models of ovarian cancer. METHODS: We evaluated treatment with MnNPs loaded with IκBα siRNA (IκBα-MnNPs) or scrambled siRNA in syngeneic ovarian cancer models. ID8 tumors in C57Bl/6 mice were used to evaluate consecutive-day treatment of late-stage disease while TBR5 tumors in FVB mice were used to evaluate repetitive treatments in a faster-developing disease model. MnNPs were evaluated for biodistribution and therapeutic efficacy in both models. RESULTS: Stimulation of NF-κB activity and repolarization to an M1 phenotype via IκBα-MnNP treatment was confirmed using cultured luciferase-reporter macrophages. Delivery of MnNPs with fluorescent payloads (Cy5-MnNPs) to macrophages in the solid tumors and ascites was confirmed in both tumor models. A three consecutive-day treatment of IκBα-MnNPs in the ID8 model validated a shift towards M1 macrophage polarization in vivo. A clear therapeutic effect was observed with biweekly treatments over 2-3 weeks in the TBR5 model where significantly reduced tumor burden was accompanied by changes in immune cell composition, indicative of reduced immunosuppressive tumor microenvironment. No evidence of toxicity associated with MnNP treatment was observed in either model. CONCLUSIONS: In mouse models of ovarian cancer, MnNPs were preferentially associated with macrophages in ascites fluid and solid tumors. Evidence of macrophage repolarization, increased inflammatory cues, and reduced tumor burden in IκBα-MnNP-treated mice indicate beneficial outcomes in models of established disease. We have provided evidence of a targeted, TAM-directed approach to increase anti-tumor immunity in ovarian cancer with strong translational potential for future clinical studies.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Animales , Ascitis , Carcinoma Epitelial de Ovario , Modelos Animales de Enfermedad , Femenino , Humanos , Manosa/farmacología , Manosa/uso terapéutico , Ratones , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , ARN Interferente Pequeño/farmacología , Distribución Tisular , Microambiente Tumoral
6.
Cell Mol Immunol ; 19(1): 46-58, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34239083

RESUMEN

In 2011, Hanahan and Weinberg added "Deregulating Cellular Energetics" and "Avoiding Immune Destruction" to the six previous hallmarks of cancer. Since this seminal paper, there has been a growing consensus that these new hallmarks are not mutually exclusive but rather interdependent. The following review summarizes how founding genetic events for tumorigenesis ultimately increase tumor cell glycolysis, which not only supports the metabolic demands of malignancy but also provides an immunoprotective niche, promoting malignant cell proliferation, maintenance and progression. The mechanisms by which altered metabolism contributes to immune impairment are multifactorial: (1) the metabolic demands of proliferating tumor cells and activated immune cells are similar, thus creating a situation where immune cells may be in competition for key nutrients; (2) the metabolic byproducts of aerobic glycolysis directly inhibit antitumor immunity while promoting a regulatory immune phenotype; and (3) the gene programs associated with the upregulation of glycolysis also result in the generation of immunosuppressive cytokines and metabolites. From this perspective, we shed light on important considerations for the development of new classes of agents targeting cancer metabolism. These types of therapies can impair tumor growth but also pose a significant risk of stifling antitumor immunity.


Asunto(s)
Neoplasias , Ciclo del Ácido Cítrico , Glucólisis/fisiología , Humanos , Neoplasias/metabolismo
7.
Nat Chem Biol ; 18(4): 360-367, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34857958

RESUMEN

Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.


Asunto(s)
Leucemia , Neoplasias , Adenosina Trifosfato , Humanos , Leucemia/tratamiento farmacológico , Macrólidos , ATPasas de Translocación de Protón Mitocondriales/química , Neoplasias/tratamiento farmacológico
8.
J Immunol ; 207(12): 3122-3130, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34772698

RESUMEN

Although obesity can promote cancer, it may also increase immunotherapy efficacy in what has been termed the obesity-immunotherapy paradox. Mechanisms of this effect are unclear, although obesity alters key inflammatory cytokines and can promote an inflammatory state that may modify tumor-infiltrating lymphocytes and tumor-associated macrophage populations. To identify mechanisms by which obesity affects antitumor immunity, we examined changes in cell populations and the role of the proinflammatory adipokine leptin in immunotherapy. Single-cell RNAseq demonstrated that obesity decreased tumor-infiltrating lymphocyte frequencies, and flow cytometry confirmed altered macrophage phenotypes with lower expression of inducible NO synthase and MHC class II in tumors of obese animals. When treated with anti-programmed cell death protein 1 (PD-1) Abs, however, obese mice had a greater absolute decrease in tumor burden than lean mice and a repolarization of the macrophages to inflammatory M1-like phenotypes. Mechanistically, leptin is a proinflammatory adipokine that is induced in obesity and may mediate enhanced antitumor immunity in obesity. To directly test the effect of leptin on tumor growth and antitumor immunity, we treated lean mice with leptin and observed tumors over time. Treatment with leptin, acute or chronic, was sufficient to enhance antitumor efficacy similar to anti-PD-1 checkpoint therapy. Further, leptin and anti-PD-1 cotreatment may enhance antitumor effects consistent with an increase in M1-like tumor-associated macrophage frequency compared with non-leptin-treated mice. These data demonstrate that obesity has dual effects in cancer through promotion of tumor growth while simultaneously enhancing antitumor immunity through leptin-mediated macrophage reprogramming.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Animales , Línea Celular Tumoral , Factores Inmunológicos/farmacología , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Ratones , Neoplasias/terapia , Obesidad/metabolismo
9.
Nature ; 593(7858): 282-288, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828302

RESUMEN

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Nutrientes/metabolismo , Microambiente Tumoral , Animales , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Femenino , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Microambiente Tumoral/inmunología
10.
J Transl Med ; 19(1): 13, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407605

RESUMEN

Over the last few years, numerous clinical trials and real-world experience have provided a large amount of evidence demonstrating the potential for long-term survival with immunotherapy agents across various malignancies, beginning with melanoma and extending to other tumours. The clinical success of immune checkpoint blockade has encouraged increasing development of other immunotherapies. It has been estimated that there are over 3000 immuno-oncology trials ongoing, targeting hundreds of disease and immune pathways. Evolving topics on cancer immunotherapy, including the state of the art of immunotherapy across various malignancies, were the focus of discussions at the Immunotherapy Bridge meeting (4-5 December, 2019, Naples, Italy), and are summarised in this report.


Asunto(s)
Biomarcadores de Tumor , Melanoma , Humanos , Inmunoterapia , Italia , Oncología Médica
11.
Arterioscler Thromb Vasc Biol ; 40(6): e153-e165, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32295422

RESUMEN

OBJECTIVE: Macrophages have been described in calcific aortic valve disease, but it is unclear if they promote or counteract calcification. We aimed to determine how macrophages are involved in calcification using the Notch1+/- model of calcific aortic valve disease. Approach and Results: Macrophages in wild-type and Notch1+/- murine aortic valves were characterized by flow cytometry. Macrophages in Notch1+/- aortic valves had increased expression of MHCII (major histocompatibility complex II). We then used bone marrow transplants to test if differences in Notch1+/- macrophages drive disease. Notch1+/- mice had increased valve thickness, macrophage infiltration, and proinflammatory macrophage maturation regardless of transplanted bone marrow genotype. In vitro approaches confirm that Notch1+/- aortic valve cells promote macrophage invasion as quantified by migration index and proinflammatory phenotypes as quantified by Ly6C and CCR2 positivity independent of macrophage genotype. Finally, we found that macrophage interaction with aortic valve cells promotes osteogenic, but not dystrophic, calcification and decreases abundance of the STAT3ß isoform. CONCLUSIONS: This study reveals that Notch1+/- aortic valve disease involves increased macrophage recruitment and maturation driven by altered aortic valve cell secretion, and that increased macrophage recruitment promotes osteogenic calcification and alters STAT3 splicing. Further investigation of STAT3 and macrophage-driven inflammation as therapeutic targets in calcific aortic valve disease is warranted.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/patología , Calcinosis/patología , Macrófagos/fisiología , Factor de Transcripción STAT3/fisiología , Animales , Válvula Aórtica/inmunología , Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/fisiopatología , Trasplante de Médula Ósea , Calcinosis/inmunología , Calcinosis/fisiopatología , Movimiento Celular , Óxidos S-Cíclicos/farmacología , Modelos Animales de Enfermedad , Expresión Génica , Genotipo , Humanos , Inflamación/patología , Macrófagos/química , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis , Receptor Notch1/análisis , Receptor Notch1/genética , Receptor Notch1/fisiología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética
12.
Acad Med ; 94(3): 302-304, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30570499

RESUMEN

The United States Medical Licensing Examination Step 1 was implemented in the 1990s as the most recent version of the National Board of Medical Examiners' preclinical licensing examination originally created in the late 1960s. For the purposes of state licensure, the exam is pass/fail, but the Step 1 numeric score has in recent years become central to the residency application and selection process. Consequently, a medical student's Step 1 score is increasingly viewed as a key outcome of preclinical medical education.In this Invited Commentary, students from various institutions across the country draw on their shared experiences to argue that the emphasis on Step 1 for residency selection has fundamentally altered the preclinical learning environment, creating a "Step 1 climate." The authors aim to increase awareness of the harms and unintended consequences of this phenomenon in medical education. They outline how the Step 1 climate negatively impacts education, diversity, and student well-being, and they urge a national conversation on the elimination of reporting Step 1 numeric scores.


Asunto(s)
Educación de Pregrado en Medicina/organización & administración , Evaluación Educacional/normas , Estudiantes de Medicina/psicología , Competencia Clínica , Educación de Pregrado en Medicina/economía , Humanos , Licencia Médica/economía , Estados Unidos
14.
J Biol Chem ; 291(22): 11540-50, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27026700

RESUMEN

The C-terminal domain (CTD) of RNA polymerase II in eukaryotes is comprised of tandemly repeating units of a conserved seven-amino acid sequence. The number of repeats is, however, quite variable across different organisms. Furthermore, previous studies have identified evidence of rearrangements within the CTD coding region, suggesting that DNA instability may play a role in regulating or maintaining CTD repeat number. The work described here establishes a clear connection between DNA instability and CTD repeat number in Saccharomyces cerevisiae First, analysis of 36 diverse S. cerevisiae isolates revealed evidence of numerous past rearrangements within the DNA sequence that encodes the CTD. Interestingly, the total number of CTD repeats was relatively static (24-26 repeats in all strains), suggesting a balancing act between repeat expansion and contraction. In an effort to explore the genetic plasticity within this region, we measured the rates of repeat expansion and contraction using novel reporters and a doxycycline-regulated expression system for RPB1 In efforts to determine the mechanisms leading to CTD repeat variability, we identified the presence of DNA secondary structures, specifically G-quadruplex-like DNA, within the CTD coding region. Furthermore, we demonstrated that mutating PIF1, a G-quadruplex-specific helicase, results in increased CTD repeat length polymorphisms. We also determined that RAD52 is necessary for CTD repeat expansion but not contraction, identifying a role for recombination in repeat expansion. Results from these DNA rearrangements may help explain the CTD copy number variation seen across eukaryotes, as well as support a model of CTD expansion and contraction to maintain CTD integrity and overall length.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , ADN de Hongos/química , ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Western Blotting , Dicroismo Circular , ADN de Hongos/genética , ADN de Hongos/metabolismo , Evolución Molecular , Datos de Secuencia Molecular , Dominios Proteicos , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA